Atomic Runbook: [Clear, Verb-Oriented Title - e.g., Get_IP_Reputation_From_GTI]#
ID: RB-ATOM-[UniqueSequentialID]
(e.g., RB-ATOM-001)
Version: 1.0
Last_Updated: YYYY-MM-DD
Purpose: [Brief description of the single task this runbook accomplishes.]
Parent_Runbook(s)/Protocol(s): [Links to broader runbooks or protocols this atomic step is part of, e.g., indicator_handling_protocols.md#ip-address
, enrich_ioc.md
]
Trigger: [When should this atomic runbook be executed? e.g., “When an IP address needs external reputation check.”]
Inputs Required#
input_parameter_1_name
: [Data Type] - [Description, e.g.,ip_address
: string - The IP address to query.]Source Example: [e.g., From Alert Field
source.ip
, From previous runbookRB-ATOM-XXX
outputtarget_ip
]
input_parameter_2_name
(optional): [Data Type] - [Description]
Execution Steps#
Tool Selection:
Primary_Tool_MCP_Server:
[e.g., Google Threat Intelligence MCP]
Primary_Tool_Name:
[e.g., get_ip_address_report]
Alternative_Tool_MCP_Server (if applicable):
Alternative_Tool_Name (if applicable):
Parameter Mapping:
Map
input_parameter_1_name
to MCP Tool parameter[tool_param_name]
.
Execute Tool: Call the selected MCP tool with mapped parameters.
AI Agent Note: Refer to
mcp_tool_best_practices.md
for specific guidance on this tool.AI Agent Note: Check
tool_rate_limits.md
before execution if applicable.
(Optional) Data Transformation/Extraction:
[If necessary, describe how to extract specific fields from the tool’s raw output.]
[Reference
data_normalization_map.md
if applicable.]
Outputs Expected#
output_parameter_1_name
: [Data Type] - [Description, e.g.,gti_ip_report_summary
: JSON - Summary of GTI findings.]Key_Fields_Within_Output (example for JSON):
last_analysis_stats.malicious
,categories
,as_owner
output_status
: [string] - [“Success”, “Failure”, “Partial_Success_Needs_Review”]output_message
(if Failure/Partial): [string] - Details of the issue.
Decision Logic / Next Steps (If Applicable)#
IF
output_status
is “Success” ANDoutput_parameter_1_name.last_analysis_stats.malicious
> 5 THENProceed to
[Next_Atomic_Runbook_ID_For_Malicious]
OR Flag as “High_Risk_IP”.
ELSE IF
output_status
is “Success” THENProceed to
[Next_Atomic_Runbook_ID_For_Benign_Or_Unknown]
OR Flag as “Low_Risk_IP”.
ELSE (
output_status
is “Failure”)Log error from
output_message
.Attempt
Alternative_Tool_Name
if defined.ELSE Escalate to human analyst as per
[Escalation_Procedure_ID_or_Document]
.
AI Agent Execution Notes#
[Specific notes for AI on how to interpret inputs/outputs, handle common errors for this specific task, or when to deviate/escalate.]
Metrics Collection Points#
Log execution time for this atomic runbook.
Log
output_status
and any error messages.(Reference
ai_performance_logging_requirements.md
)
References#
[Link to relevant sections in
mcp_tool_best_practices.md
,data_normalization_map.md
, etc.][Link to source articles if a specific technique is from them, e.g., “Blueprint for AI Agents in Cybersecurity” if discussing general AI agent interaction.]