Atomic Runbook: [Clear, Verb-Oriented Title - e.g., Get_IP_Reputation_From_GTI]#

ID: RB-ATOM-[UniqueSequentialID] (e.g., RB-ATOM-001) Version: 1.0 Last_Updated: YYYY-MM-DD Purpose: [Brief description of the single task this runbook accomplishes.] Parent_Runbook(s)/Protocol(s): [Links to broader runbooks or protocols this atomic step is part of, e.g., indicator_handling_protocols.md#ip-address, enrich_ioc.md] Trigger: [When should this atomic runbook be executed? e.g., “When an IP address needs external reputation check.”]


Inputs Required#

  • input_parameter_1_name: [Data Type] - [Description, e.g., ip_address: string - The IP address to query.]

    • Source Example: [e.g., From Alert Field source.ip, From previous runbook RB-ATOM-XXX output target_ip]

  • input_parameter_2_name (optional): [Data Type] - [Description]


Execution Steps#

  1. Tool Selection:

    • Primary_Tool_MCP_Server: [e.g., Google Threat Intelligence MCP]

    • Primary_Tool_Name: [e.g., get_ip_address_report]

    • Alternative_Tool_MCP_Server (if applicable):

    • Alternative_Tool_Name (if applicable):

  2. Parameter Mapping:

    • Map input_parameter_1_name to MCP Tool parameter [tool_param_name].

  3. Execute Tool: Call the selected MCP tool with mapped parameters.

    • AI Agent Note: Refer to mcp_tool_best_practices.md for specific guidance on this tool.

    • AI Agent Note: Check tool_rate_limits.md before execution if applicable.

  4. (Optional) Data Transformation/Extraction:

    • [If necessary, describe how to extract specific fields from the tool’s raw output.]

    • [Reference data_normalization_map.md if applicable.]


Outputs Expected#

  • output_parameter_1_name: [Data Type] - [Description, e.g., gti_ip_report_summary: JSON - Summary of GTI findings.]

    • Key_Fields_Within_Output (example for JSON): last_analysis_stats.malicious, categories, as_owner

  • output_status: [string] - [“Success”, “Failure”, “Partial_Success_Needs_Review”]

  • output_message (if Failure/Partial): [string] - Details of the issue.


Decision Logic / Next Steps (If Applicable)#

  • IF output_status is “Success” AND output_parameter_1_name.last_analysis_stats.malicious > 5 THEN

    • Proceed to [Next_Atomic_Runbook_ID_For_Malicious] OR Flag as “High_Risk_IP”.

  • ELSE IF output_status is “Success” THEN

    • Proceed to [Next_Atomic_Runbook_ID_For_Benign_Or_Unknown] OR Flag as “Low_Risk_IP”.

  • ELSE (output_status is “Failure”)

    • Log error from output_message.

    • Attempt Alternative_Tool_Name if defined.

    • ELSE Escalate to human analyst as per [Escalation_Procedure_ID_or_Document].


AI Agent Execution Notes#

  • [Specific notes for AI on how to interpret inputs/outputs, handle common errors for this specific task, or when to deviate/escalate.]


Metrics Collection Points#

  • Log execution time for this atomic runbook.

  • Log output_status and any error messages.

  • (Reference ai_performance_logging_requirements.md)


References#

  • [Link to relevant sections in mcp_tool_best_practices.md, data_normalization_map.md, etc.]

  • [Link to source articles if a specific technique is from them, e.g., “Blueprint for AI Agents in Cybersecurity” if discussing general AI agent interaction.]